5-Lane 5-Port PCI Express®

Switch

89PES5T5 **Data Sheet** Advance Information*

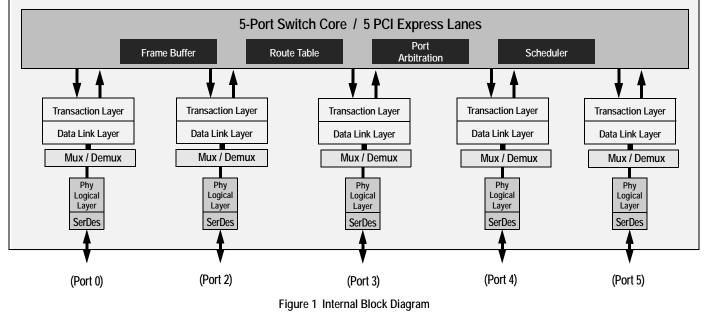
Device Overview

The 89HPES5T5 is a member of IDT's PRECISE[™] family of PCI Express switching solutions. The PES5T5 is an 5-lane, 5-port peripheral chip that performs PCI Express Base switching. It provides connectivity and switching functions between a PCI Express upstream port and up to four downstream ports and supports switching between downstream ports.

Features

High Performance PCI Express Switch

- Five 2.5Gbps PCI Express lanes
- Five switch ports
- Upstream port is x1 _
- Downstream ports are x1
- Low-latency cut-through switch architecture
- Support for Max Payload Sizes up to 256 bytes
- One virtual channel
- Eight traffic classes
- PCI Express Base Specification Revision 1.1 compliant
- Flexible Architecture with Numerous Configuration Options
 - Automatic lane reversal on all ports
 - Automatic polarity inversion
 - Ability to load device configuration from serial EEPROM
- Legacy Support
 - PCI compatible INTx emulation
 - Bus locking


Block Diagram

Highly Integrated Solution

- Requires no external components
- Incorporates on-chip internal memory for packet buffering and queueing
- Integrates five 2.5 Gbps embedded SerDes with 8B/10B encoder/decoder (no separate transceivers needed)
- Reliability, Availability, and Serviceability (RAS) Features
 - Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRČ (ECRC)
 - Supports ECRC and Advanced Error Reporting
 - Supports PCI Express Native Hot-Plug, Hot-Swap capable I/O
 - Compatible with Hot-Plug I/O expanders used on PC motherboards
- Power Management
 - Utilizes advanced low-power design techniques to achieve low typical power consumption
 - Supports PCI Power Management Interface specification (PCI-PM 1.2)
 - Unused SerDes are disabled.
 - Supports Advanced Configuration and Power Interface Specification, Revision 2.0 (ACPI) supporting active link state

Testability and Debug Features

- Built in Pseudo-Random Bit Stream (PRBS) generator
- Numerous SerDes test modes
- Ability to read and write any internal register via the SMBus
- Ability to bypass link training and force any link into any mode
- Provides statistics and performance counters

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

*Notice: The information in this document is subject to change without notice

- 11 General Purpose Input/Output Pins
 - Each pin may be individually configured as an input or output
 - Each pin may be individually configured as an interrupt input
 - Some pins have selectable alternate functions
- Packaged in a 15mm x 15mm 196-ball BGA with 1mm ball spacing

Product Description

Utilizing standard PCI Express interconnect, the PES5T5 provides the most efficient I/O connectivity solution for applications requiring high throughput, low latency, and simple board layout with a minimum number of board layers. It provides 2.5 GBps (20 Gbps) of aggregated, full-duplex switching capacity through 5 integrated serial lanes, using proven and robust IDT technology. Each lane provides 2.5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base specification revision 1.1.

The PES5T5 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers in compliance with PCI Express Base specification Revision 1.1. The PES5T5 can operate either as a store and forward or cut-through switch and is designed to switch memory and I/O transactions. It supports eight Traffic Classes (TCs) and one Virtual Channel (VC) with sophisticated resource management to allow efficient switching for applications requiring additional narrow port connectivity.

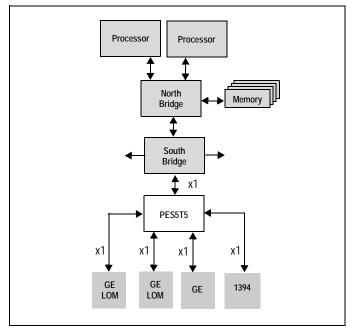


Figure 2 I/O Expansion Application

SMBus Interface

The PES5T5 contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the PES5T5, allowing every configuration register in the device to be read or written by an external agent. The master interface allows the default configuration register values of the PES5T5 to be overridden following a reset with values programmed in an external serial EEPROM. The master interface is also used by an external Hot-Plug I/O expander.

Six pins make up each of the two SMBus interfaces. These pins consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus address pins. In the slave interface, these address pins allow the SMBus address to which the device responds to be configured. In the master interface, these address pins allow the SMBus address of the serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by sampling the corresponding address pins. When the pins are sampled, the resulting address is assigned as shown in Table 1.

Bit	Slave SMBus Address	Master SMBus Address
1	SSMBADDR[1]	MSMBADDR[1]
2	SSMBADDR[2]	MSMBADDR[2]
3	SSMBADDR[3]	MSMBADDR[3]
4	0	MSMBADDR[4]
5	SSMBADDR[5]	1
6	1	0
7	1	1

Table 1 Master and Slave SMBus Address Assignment

As shown in Figure 3, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure 3(a), the master and slave SMBuses are tied together and the PES5T5 acts both as a SMBus master as well as a SMBus slave on this bus. This requires that the SMBus master or processor that has access to PES5T5 registers supports SMBus arbitration. In some systems, this SMBus master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To support these systems, the PES5T5 may be configured to operate in a split configuration as shown in Figure 3(b).

In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required. The PES5T5 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of the serial EEPROM.

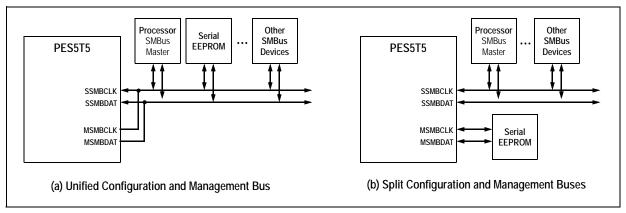


Figure 3 SMBus Interface Configuration Examples

Hot-Plug Interface

The PES5T5 supports PCI Express Hot-Plug on each downstream port. To reduce the number of pins required on the device, the PES5T5 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES5T5 generates an SMBus transaction to the I/O expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN input pin (alternate function of GPIO) of the PES5T5. In response to an I/O expander interrupt, the PES5T5 generates an SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander.

General Purpose Input/Output

The PES5T5 provides 11 General Purpose Input/Output (GPIO) pins that may be used by the system designer as bit I/O ports. Each GPIO pin may be configured independently as an input or output through software control. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM.

Pin Description

The following tables lists the functions of the pins provided on the PES5T5. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an "N" are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.

Signal	Туре	Name/Description			
PE0RP[0] PE0RN[0]	I	PCI Express Port 0 Serial Data Receive. Differential PCI Express receive pair for port 0.			
PE0TP[0] PE0TN[0]	0	PCI Express Port 0 Serial Data Transmit. Differential PCI Express trans- mit pair for port 0.			
PE2RP[0] PE2RN[0]	I	PCI Express Port 2 Serial Data Receive. Differential PCI Express receive pair for port 2.			
PE2TP[0] PE2TN[0]	0	PCI Express Port 2 Serial Data Transmit. Differential PCI Express trans- mit pair for port 2.			
PE3RP[0] PE3RN[0]	I	PCI Express Port 3 Serial Data Receive. Differential PCI Express receive pair for port 3.			
PE3TP[0] PE3TN[0]	0	PCI Express Port 3 Serial Data Transmit. Differential PCI Express trans mit pair for port 3.			
PE4RP[0] PE4RN[0]	I	PCI Express Port 4 Serial Data Receive. Differential PCI Express receipair for port 4.			
PE4TP[0] PE4TN[0]	0	PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pair for port 4.			
PE5RP[0] PE5RN[0]	I	PCI Express Port 5 Serial Data Receive. Differential PCI Express receive pair for port 5.			
PE5TP[0] PE5TN[0]	0	PCI Express Port 5 Serial Data Transmit. Differential PCI Express trans- mit pair for port 5.			
PEREFCLKP PEREFCLKN	I	PCI Express Reference Clock. Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal.			
REFCLKM	I	PCI Express Reference Clock Mode Select. This signal selects the fre- quency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz			

 Table 2
 PCI Express Interface Pins

Signal	Туре	Name/Description
MSMBADDR[4:1]	ļ	Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded.
MSMBCLK	I/O	Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus.
MSMBDAT	I/O	Master SMBus Data. This bidirectional signal is used for data on the master SMBus.
SSMBADDR[5,3:1]	ļ	Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds.
SSMBCLK	I/O	Slave SMBus Clock. This bidirectional signal is used to synchronize trans- fers on the slave SMBus.
SSMBDAT	I/O	Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus.

Table 3 SMBus Interface Pins

Signal	Туре	Name/Description
GPIO[0]	1/0	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P2RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 2
GPIO[1]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P4RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 4
GPIO[2]	1/0	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTNO Alternate function pin type: Input Alternate function: I/O Expander interrupt 0 input
GPIO[3]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN1 Alternate function pin type: Input Alternate function: I/O Expander interrupt 1 input
GPIO[4]	1/0	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN2 Alternate function pin type: Input Alternate function: I/O Expander interrupt 2 input
GPIO[5]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin.
GPIO[6]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin.

Table 4 General Purpose I/O Pins (Part 1 of 2)

Signal	Туре	Name/Description
GPIO[7]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: GPEN Alternate function pin type: Output Alternate function: General Purpose Event (GPE) output
GPIO[8]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin.
GPIO[9]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P3RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 3
GPIO[10]	I/O	General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P5RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 5

 Table 4 General Purpose I/O Pins (Part 2 of 2)

Signal	Туре	Name/Description			
APWRDISN	ļ	Auxiliary Power Disable Input. When this pin is active, it disables the device from using auxiliary power supply.			
CCLKDS	I	Common Clock Downstream . The assertion of this pin indicates that downstream ports are using the same clock source as that provided to downstream devices. This bit is used as the initial value of the Slot Cloc Configuration bit in all of the Link Status Registers for downstream por The value may be override by modifying the SCLK bit in the downstream port's PCIELSTS register.			
CCLKUS	I	Common Clock Upstream . The assertion of this pin indicates that the upstream port is using the same clock source as the upstream device. This bit is used as the initial value of the Slot Clock Configuration bit in the Link Status Register for the upstream port. The value may be overridden by modifying the SCLK bit in the PA_PCIELSTS register.			
MSMBSMODE	I	Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 kHz. This value may not be overridden.			
PERSTN	I	Fundamental Reset. Assertion of this signal resets all logic inside the PES5T5 and initiates a PCI Express fundamental reset.			

Table 5 System Pins (Part 1 of 2)

Signal	Туре	Name/Description
RSTHALT	I	Reset Halt. When this signal is asserted during a PCI Express fundamental reset, the PES5T5 executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the PA_SWCTL register by an SMBus master.
SWMODE[2:0]	I	Switch Mode. These configuration pins determine the PES5T5 switch operating mode. 0x0 - Normal switch mode 0x1 - Normal switch mode with Serial EEPROM initialization 0x2 - through 0xF Reserved
WAKEN	I/O	Wake Input/Output. The WAKEN signal is an input or output. The WAKEN signal input/output selection can be made through the WAKEDIR bit setting in the WAKEUPCNTL register.

Table 5 System Pins (Part 2 of 2)

Signal	Туре	Name/Description				
JTAG_TCK	I	JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle.				
JTAG_TDI	I	JTAG Data Input. This is the serial data input to the boundary scan logic of JTAG Controller.				
JTAG_TDO	0	JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated.				
JTAG_TMS	I	JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller.				
JTAG_TRST_N	Ι	JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board				

Table 6 Test Pins

Signal	Туре	Name/Description
V _{DD} CORE	I	Core VDD. Power supply for core logic.
V _{DD} IO	I	I/O VDD. LVTTL I/O buffer power supply.
V _{DD} PE	I	PCI Express Digital Power . PCI Express digital power used by the digital power of the SerDes.
V _{DD} APE	I	PCI Express Analog Power. PCI Express analog power used by the PLL and bias generator.
V _{TT} PE	I	PCI Express Termination Power.
V _{SS}	I	Ground.

Table 7 Power and Ground Pins

Pin Characteristics

Note: Some input pads of the PES5T5 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption.

Function	Pin Name	Туре	Buffer	І/О Туре	Internal Resistor	Notes
PCI Express Inter-	PE0RN[0]	I	CML	Serial Link		
face	PE0RP[0]	I				
	PE0TN[0]	0				
	PE0TP[0]	0				
	PE2RN[0]	I				
	PE2RP[0]	I				
	PE2TN[0]	0				
	PE2TP[0]	0				
	PE3RN[0]	I				
	PE3RP[0]	I			-	
	PE3TN[0]	0			-	
	PE3TP[0]	0			-	
	PE4RN[0]	I			-	
	PE4RP[0]	I				
	PE4TN[0]	0				
	PE4TP[0]	0				
	PE5RN[0]	I				
	PE5RP[0]	I				
	PE5TN[0]	0				
	PE5TP[0]	0				
	PEREFCLKN	I	LVPECL/	Diff. Clock		Refer to Table 9
	PEREFCLKP	I	CML	Input		
	REFCLKM	I	LVTTL	Input	pull-down	
SMBus	MSMBADDR[4:1]	I	LVTTL	Input	pull-up	
	MSMBCLK	I/O		STI ¹		
	MSMBDAT	I/O		STI		
	SSMBADDR[5,3:1]	I		Input	pull-up	
	SSMBCLK	I/O		STI		
	SSMBDAT	I/O		STI		
General Purpose I/O	GPIO[10:0]	I/O	LVTTL	High Drive	pull-up	

Table 8 Pin Characteristics (Part 1 of 2)

Function	Pin Name	Туре	Buffer	I/О Туре	Internal Resistor	Notes
System Pins	APWRDISN	I	LVTTL	Input	pull-down	
	CCLKDS	I			pull-up	
	CCLKUS	I			pull-up	
	MSMBSMODE	I			pull-down	
	PERSTN	I				
	RSTHALT	I			pull-down	
	SWMODE[2:0]	I			pull-down	
	WAKEN	I/O			open-drain	
EJTAG / JTAG	JTAG_TCK	I	LVTTL	STI	pull-up	
	JTAG_TDI	I		STI	pull-up	
	JTAG_TDO	0				
	JTAG_TMS	I		STI	pull-up	
	JTAG_TRST_N	I		STI	pull-up	

Table 8 Pin Characteristics (Part 2 of 2)

^{1.} Schmitt Trigger Input (STI).

Logic Diagram — PES5T5

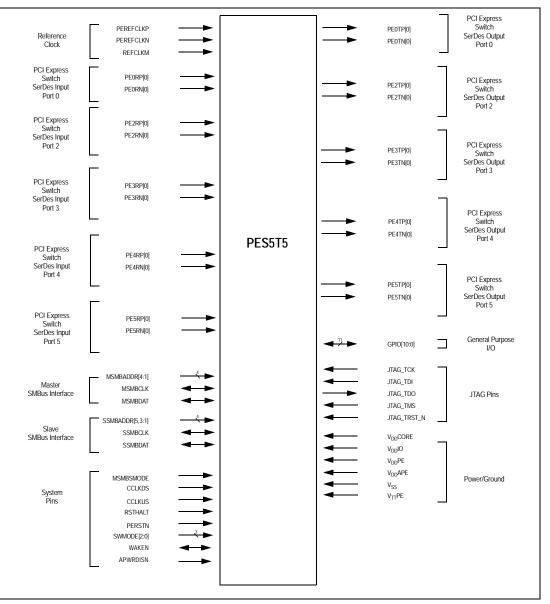


Figure 4 PES5T5 Logic Diagram

System Clock Parameters

Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14.

Parameter	Description	Min	Typical	Max	Unit
PEREFCLK					
Refclk _{FREQ}	Input reference clock frequency range	100		125 ¹	MHz
Refclk _{DC} ²	Duty cycle of input clock	40	50	60	%
T _R , T _F	Rise/Fall time of input clocks			0.2*RCUI	RCUI ³
V _{SW}	Differential input voltage swing ⁴	0.6		1.6	V
T _{jitter}	Input clock jitter (cycle-to-cycle)			125	ps

Table 9 Input Clock Requirements

^{1.} The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM.

 $^{2.}$ ClkIn must be AC coupled. Use 0.01 - 0.1 μF ceramic capacitors.

 $^{\rm 3.}\,\rm RCUI$ (Reference Clock Unit Interval) refers to the reference clock period.

^{4.} AC coupling required.

AC Timing Characteristics

Parameter	Description	Min	Typical	Max	Units
PCIe Transmit	·				
T _{TX-RISE} , T _{TX-FALL}	Rise / Fall time of TxP, TxN outputs	80		110 ¹	ps
UI	Unit Interval	399.88	400	400.12	ps
T _{TX-MAX-JITTER}	Transmitter Total Jitter (peak-to-peak)			0.25 ²	UI
T _{TX-EYE}	Minimum Tx Eye Width (1 - T _{TX-MAX-JITTER})	0.75			UI
T _{TX-EYE-MEDIAN-to-} MAX-JITTER	Maximum time between the jitter median and maximum deviation from the median			0.15	UI
L _{TLAT-10}	Transmitter data latency (for n=10)	9		11	bits
L _{TLAT-20}	Transmitter data latency (for n=20)	9		11	bits
T _{TX-SKEW}	Transmitter data skew between any 2 lanes		500	1300	ps
T _{TX-IDLE-SET-TO-} IDLE	Maximum time to transition to a valid electrical idle after sending an Electrical Idle ordered set		4	6	ns
T _{EIExit}	Time to exit Electrical Idle (L0s) state into L0		12	16	ns
T _{BTEn}	Time from asserting Beacon TxEn to beacon being trans- mitted on the lane		30	80	ns
T _{RxDetectEn}	Pulse width of RxDetectEn input	9.8	10	10.2	ns
T _{RxDetect}	RxDetectEn falling edge to RxDetect delay		1	2	ns
PCIe Receive	·				
L _{RLAT-10}	Recover data latency for n=10	28		29	bits
L _{RLAT-20}	Recover data latency for n=20	49		60	bits

Table 10 PCIe AC Timing Characteristics (Part 1 of 2)

Parameter	Description	Min	Typical	Мах	Units
T _{RX-SKEW}	Receiver data skew between any 2 lanes			20	ns
T _{BDDly}	Beacon-Activity on channel to detection of Beacon ³			200	μs
T _{RX-IDLE_ENTER}	Delay from detection of Electrical Idle condition on the channel to assertion of TxIdleDetect output		10	20	ns
T _{RX-IDLE_EXIT}	Delay from detection of LOs to L0 transition to de-asser- tion of TxIdleDetect output		5	10	ns
T _{RX-MAX-JITTER}	Receiver total jitter tolerance			0.65	UI
T _{RX-EYE}	Minimum Receiver Eye Width	0.35			UI
T _{RX-EYE-MEDIAN-to-} MAX JITTER	Maximum time between jitter median and max deviation from median			0.325	UI

Table 10 PCIe AC Timing Characteristics (Part 2 of 2)

^{1.} As measured between 20% and 80% points. Will depend on package characteristics.

^{2.} Measured using PCI Express Compliance Pattern.

^{3.} This is a function of beacon frequency.

Signal	Symbol	Reference Edge	Min	Min Max		Timing Diagram Reference
GPIO						
GPIO[10:0] ¹	Tpw_13b ²	None	50		ns	See Figure 5.

Table 11 GPIO AC Timing Characteristics

^{1.} GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous.

^{2.} The values for this symbol were determined by calculation, not by testing.

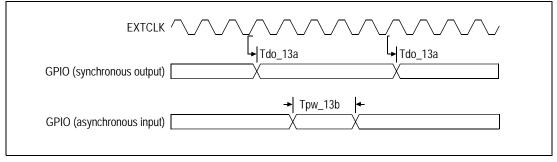


Figure 5 GPIO AC Timing Waveform

Signal	Symbol	Reference Edge	Min	Max	Unit	Timing Diagram Reference				
JTAG										
JTAG_TCK	Tper_16a	none	25.0	50.0	ns	See Figure 6.				
	Thigh_16a, Tlow_16a		10.0	25.0	ns					
JTAG_TMS ¹ ,	Tsu_16b	JTAG_TCK rising	2.4	—	ns					
JTAG_TDI	Thld_16b		1.0	—	ns					
JTAG_TDO	Tdo_16c	JTAG_TCK falling	—	11.3	ns					
	Tdz_16c ²		_	11.3	ns					
JTAG_TRST_N	Tpw_16d ²	none	25.0	—	ns					

Table 12 JTAG AC Timing Characteristics

^{1.} The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.

 $^{2\cdot}$ The values for this symbol were determined by calculation, not by testing.

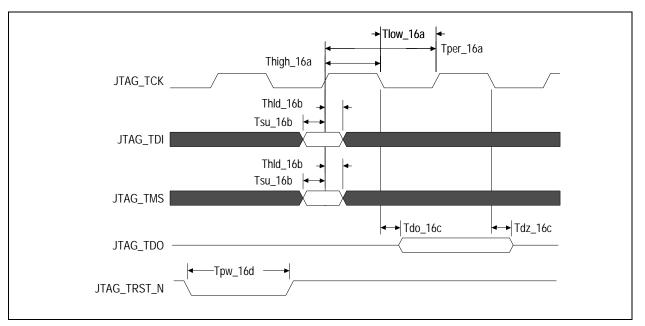


Figure 6 JTAG AC Timing Waveform

Recommended Operating Supply Voltages

Symbol	Parameter	Minimum	Typical	Maximum	Unit
V _{DD} CORE	Internal logic supply	0.9	1.0	1.1	V
V _{DD} I/O	I/O supply except for SerDes LVPECL/CML	3.135	3.3	3.465	V
V _{DD} PE	PCI Express Digital Power	0.9	1.0	1.1	V
V _{DD} APE	PCI Express Analog Power	0.9	1.0	1.1	V
V _{TT} PE	PCI Express Serial Data Transmit Termination Voltage	1.425	1.5	1.575	V
V _{SS}	Common ground	0	0	0	V

Table 13 PES5T5 Operating Voltages

Power-Up/Power-Down Sequence

This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the PES5T5, the power-up sequence must be as follows:

- 1. V_{DD}I/O 3.3V
- 2. V_{DD}Core, V_{DD}PE, V_{DD}APE 1.0V
- 3. V_{TT}PE 1.5V

When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues are avoided. There are no maximum time limitations in ramping to valid power levels.

The power-down sequence must be in the reverse order of the power-up sequence.

Recommended Operating Temperature

Grade	Temperature
Commercial	0°C to +70°C Ambient

Table 14 PES5T5 Operating Temperatures

Power Consumption

Ра	rameter	Тур.	Max.	Unit	Conditions
I _{DD} I/O		tbd	tbd	mA	$T_{ambient} = 25^{\circ}C$ Max. values use the maximum volt- ages listed in Table 13. Typical val- ues use the typical voltages listed in that table.
I _{DD} Core	Normal mode	tbd	tbd	mA	
	Standby mode ¹	tbd	—	mA	
I _{DD} PE,		tbd	tbd	mA	
I _{DD} APE		tbd	tbd	mA	
I _{TT} PE	I _{TT} PE		tbd	mA	
Power	Normal mode	tbd	tbd	W	
Dissipation	Standby mode ¹	tbd	—	W	

Table 15 PES5T5 Power Consumption

^{1.} All ports in D1 state.

Advance Information

DC Electrical Characteristics

Values based on systems running at recommended supply voltages, as shown in Table 13.

Note: See Table 8, Pin Characteristics, for a complete I/O listing.

I/О Туре	Parameter	Description	Min ¹	Typ ¹	Max ¹	Unit	Conditions				
Serial Link	PCIe Transmit										
	V _{TX-DIFFp-p}	Differential peak-to-peak output voltage	800		1200	mV					
	V _{TX-DE-RATIO}	De-emphasized differential output voltage	-3		-4	dB					
	V _{TX-DC-CM}	DC Common mode voltage	-0.1	1	3.7	V					
	V _{TX-CM-ACP}	RMS AC peak common mode output volt- age			20	mV					
	V _{TX-CM-DC-} active-idle-delta	Abs delta of DC common mode voltage between L0 and idle			100	mV					
	V _{TX-CM-DC-line-} delta	Abs delta of DC common mode voltage between D+ and D-			25	mV					
	V _{TX-Idle-DiffP}	Electrical idle diff peak output			20	mV					
	V _{TX-RCV-Detect}	Voltage change during receiver detection			600	mV					
	RL _{TX-DIFF}	Transmitter Differential Return loss	12			dB					
	RL _{TX-CM}	Transmitter Common Mode Return loss	6			dB					
	Z _{TX-DEFF-DC}	DC Differential TX impedance	80	100	120	Ω					
	Z _{OSE}	Single ended TX Impedance	40	50	60	Ω					
	Transmitter Eye Diagram	TX Eye Height (De-emphasized bits)	505	650		mV					
	Transmitter Eye Diagram	TX Eye Height (Transition bits)	800	950		mV					
	PCIe Receive										
	V _{RX-DIFFp-p}	Differential input voltage (peak-to-peak)	175		1200	mV					
	V _{RX-CM-AC}	Receiver common-mode voltage for AC coupling			150	mV					
	RL _{RX-DIFF}	Receiver Differential Return Loss	15			dB					
	RL _{RX-CM}	Receiver Common Mode Return Loss	6			dB					
	Z _{RX-DIFF-DC}	Differential input impedance (DC)	80	100	120	Ω					
	Z _{RX-COMM-DC}	Single-ended input impedance	40	50	60	Ω					
	Z _{RX-COMM-HIGH-} Z-DC	Powered down input common mode impedance (DC)	200k	350k		Ω					
	V _{RX-IDLE-DET-} DIFFp-p	Electrical idle detect threshold	65		175	mV					
Cle REFCLK											
	C _{IN}	Input Capacitance	1.5	_		pF					

Table 16 DC Electrical Characteristics (Part 1 of 2)

IDT 89PES5T5 Data Sheet								
I/О Туре	Parameter	Description	Min ¹	Typ ¹	Max ¹	Unit	Conditions	
Other I/Os	·							
LOW Drive	I _{OL}		_	2.5	—	mA	$V_{OL} = 0.4v$	
Output	I _{OH}		-	-5.5	-	mA	V _{OH} = 1.5V	
High Drive	I _{OL}		_	12.0	—	mA	$V_{OL} = 0.4v$	
Output	I _{OH}		_	-20.0	—	mA	V _{OH} = 1.5V	
Schmitt Trig-	V _{IL}		-0.3		0.8	V	_	
ger Input (STI)	V _{IH}		2.0	_	V _{DD} IO + 0.5	V	_	
Input	V _{IL}		-0.3	-	0.8	V	_	
	V _{IH}		2.0	_	V _{DD} IO + 0.5	V	_	
Capacitance	C _{IN}		-	-	8.5	pF	_	
Leakage	Inputs		-		<u>+</u> 10	μΑ	V _{DD} I/O (max)	
	I/O _{LEAK W/O} Pull-ups/downs		_	_	<u>+</u> 10	μA	V _{DD} I/O (max)	
	I/O _{LEAK WITH} Pull-ups/downs		_		<u>+</u> 80	μΑ	V _{DD} I/O (max)	

Table 16 DC Electrical Characteristics (Part 2 of 2)

^{1.} Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1.

Package Pinout — 196-BGA Signal Pinout for PES5T5

The following table lists the pin numbers and signal names for the PES5T5 device.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
A1	V _{SS}		C7	V _{DD} APE	1	E13	V _{DD} CORE		H5	V _{SS}	
A2	NC		C8	V _{DD} APE		E14	V _{SS}		H6	V _{DD} CORE	
A3	V _{SS}		C9	V _{TT} PE		F1	MSMBDAT		H7	V _{DD} CORE	
A4	NC		C10	CCLKDS		F2	SSMBADDR_2		H8	V _{SS}	
A5	NC		C11	V _{SS}		F3	SSMBADDR_5		H9	V _{SS}	
A6	V _{SS}		C12	V _{DD} IO		F4	V _{DD} IO		H10	V _{DD} CORE	
A7	NC		C13	V _{SS}		F5	V _{SS}		H11	V _{DD} CORE	
A8	NC		C14	SWMODE_0		F6	V _{DD} CORE		H12	GPIO_05	
A9	V _{SS}		D1	SSMBCLK		F7	V _{DD} CORE		H13	GPIO_03	1
A10	NC		D2	SSMBDAT		F8	V _{SS}		H14	GPIO_02	1
A11	PE0TN00		D3	V _{SS}		F9	V _{DD} CORE		J1	JTAG_TDO	
A12	V _{SS}		D4	V _{DD} IO		F10	V _{DD} CORE		J2	JTAG_TRST_N	
A13	PE0RP00		D5	V _{DD} CORE		F11	V _{DD} IO		J3	JTAG_TMS	
A14	V _{SS}		D6	V _{DD} CORE		F12	GPIO_00	1	J4	V _{DD} CORE	
B1	V _{SS}		D7	V _{DD} PE		F13	PERSTN		J5	V _{SS}	
B2	NC		D8	V _{DD} PE		F14	V _{SS}		J6	V _{DD} CORE	
B3	V _{SS}		D9	V _{DD} CORE		G1	MSMBADDR_4		J7	V _{SS}	
B4	NC		D10	V _{DD} IO		G2	MSMBCLK		J8	V _{DD} CORE	
B5	NC		D11	V _{DD} CORE		G3	V _{DD} IO		J9	V _{DD} CORE	
B6	V _{SS}		D12	V _{SS}		G4	V _{SS}		J10	V _{SS}	
B7	NC		D13	SWMODE_2		G5	V _{DD} CORE		J11	V _{DD} IO	
B8	NC		D14	SWMODE_1		G6	V _{SS}		J12	V _{DD} IO	
B9	V _{SS}		E1	SSMBADDR_1		G7	V _{SS}		J13	GPIO_06	
B10	NC		E2	SSMBADDR_3		G8	V _{DD} CORE		J14	GPIO_04	1
B11	PE0TP00		E3	V _{DD} IO		G9	V _{SS}		K1	JTAG_TDI	
B12	V _{SS}		E4	V _{DD} CORE		G10	V _{SS}		K2	V _{DD} IO	
B13	PE0RN00		E5	V _{SS}		G11	V _{SS}		K3	V _{DD} APE	
B14	V _{SS}		E6	V _{SS}		G12	V _{DD} IO		K4	V _{SS}	
C1	WAKEN		E7	V _{SS}	1	G13	GPIO_01	1	K5	V _{DD} CORE	1
C2	APWRDISN		E8	V _{SS}		G14	RSTHALT		K6	V _{SS}	1
C3	CCLKUS		E9	V _{SS}		H1	MSMBADDR_1		K7	V _{SS}	
C4	V _{SS}		E10	V _{DD} CORE		H2	MSMBADDR_2		K8	V _{SS}	
C5	V _{SS}		E11	V _{SS}		H3	MSMBADDR_3		К9	V _{SS}	1
C6	V _{TT} PE		E12	V _{DD} IO		H4	V _{DD} CORE		K10	V _{SS}	1

Table 17 PES5T5 196-pin Signal Pin-Out (Part 1 of 2)

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
K11	V _{DD} CORE		L12	V _{SS}		M13	MSMBSMODE		N14	PE5RN00	
K12	V _{SS}		L13	GPIO_10	1	M14	V _{SS}		P1	PEREFCLKP	
K13	GPIO_08		L14	GPIO_09	1	N1	PEREFCLKN		P2	V _{SS}	
K14	GPIO_07	1	M1	V _{SS}		N2	V _{SS}		P3	PE2RP00	
L1	JTAG_TCK		M2	V _{DD} CORE		N3	PE2RN00		P4	V _{SS}	
L2	V _{SS}		M3	V _{DD} CORE		N4	V _{SS}		P5	PE2TN00	
L3	V _{SS}		M4	V _{SS}		N5	PE2TP00		P6	PE3TP00	
L4	V _{DD} IO		M5	V _{DD} IO		N6	PE3TN00		P7	V _{SS}	
L5	V _{DD} CORE		M6	V _{TT} PE		N7	V _{SS}		P8	PE3RP00	
L6	V _{DD} CORE		M7	V _{DD} APE		N8	PE3RN00		P9	PE4RN00	
L7	V _{DD} PE		M8	V _{DD} APE		N9	PE4RP00		P10	V _{SS}	
L8	V _{DD} PE		M9	V _{TT} PE		N10	V _{SS}		P11	PE4TP00	
L9	V _{DD} CORE		M10	V _{DD} IO		N11	PE4TN00		P12	PE5TN00	
L10	V _{DD} CORE		M11	V _{DD} IO		N12	PE5TP00		P13	V _{SS}	
L11	V _{SS}		M12	REFCLKM		N13	V _{SS}		P14	PE5RP00	

Table 17 PES5T5 196-pin Signal Pin-Out (Part 2 of 2)

Alternate Signal Functions

Pin	GPIO	Alternate
F12	GPIO_00	P2RSTN
G13	GPIO_01	P4RSTN
H14	GPIO_02	IOEXPINTN0
H13	GPIO_03	IOEXPINTN1
J14	GPIO_04	IOEXPINTN2
K14	GPIO_07	GPEN
L14	GPIO_09	P3RSTN
L13	GPIO_10	P5RSTN

Table 18 PES5T5 Alternate Signal Functions

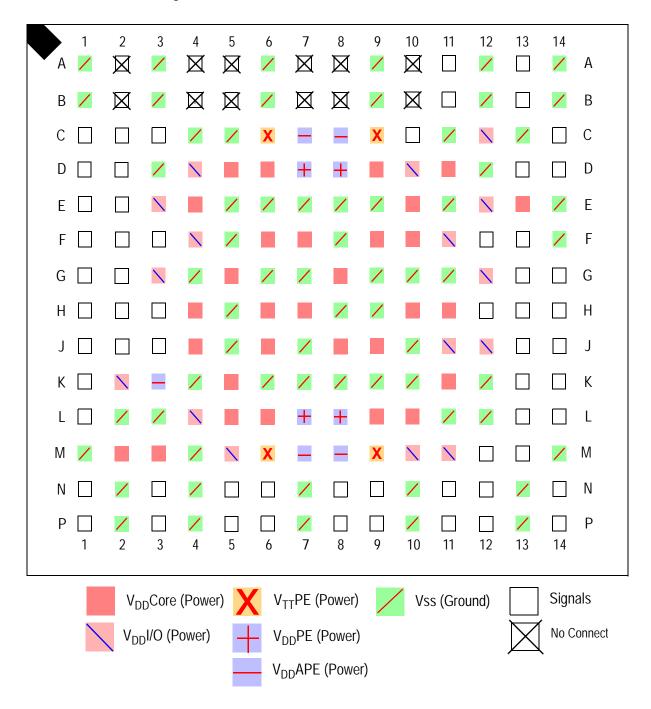
Power Pins

V _{DD} Core	V _{DD} Core	V _{DD} IO	V _{DD} PE	V _{DD} APE	V _{TT} PE
D5	H10	C12	D7	C7	C6
D6	H11	D4	D8	C8	С9
D9	J4	D10	L7	K3	M6
D11	J6	E3	L8	M7	M9
E4	8L	E12		M8	
E10	J9	F4			
E13	K5	F11			
F6	K11	G3			
F7	L5	G12			
F9	L6	J11			
F10	L9	J12			
G5	L10	K2			
G8	M2	L4			
H4	M3	M5	1		
H6		M10	1		
H7	1	M11	1		

Table 19 PES5T5 Power Pins

Ground Pins

V _{ss}	V _{ss}	V _{ss}	V _{ss}
A1	D3	G10	L3
A3	D12	G11	L11
A6	E5	H5	L12
A9	E6	H8	M1
A12	E7	Н9	M4
A14	E8	J5	M14
B1	E9	J7	N2
B3	E11	J10	N4
B6	E14	K4	N7
В9	F5	К6	N10
B12	F8	K7	N13
B14	F14	K8	P2
C4	G4	К9	P4
C5	G6	K10	P7
C11	G7	K12	P10
C13	G9	L2	P13


Table 20 PES5T5 Ground Pins

No Connection Pins

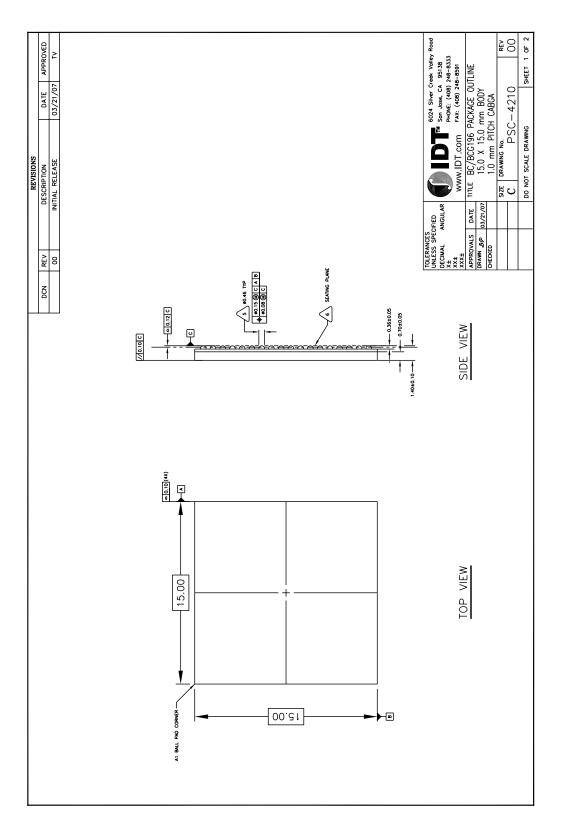
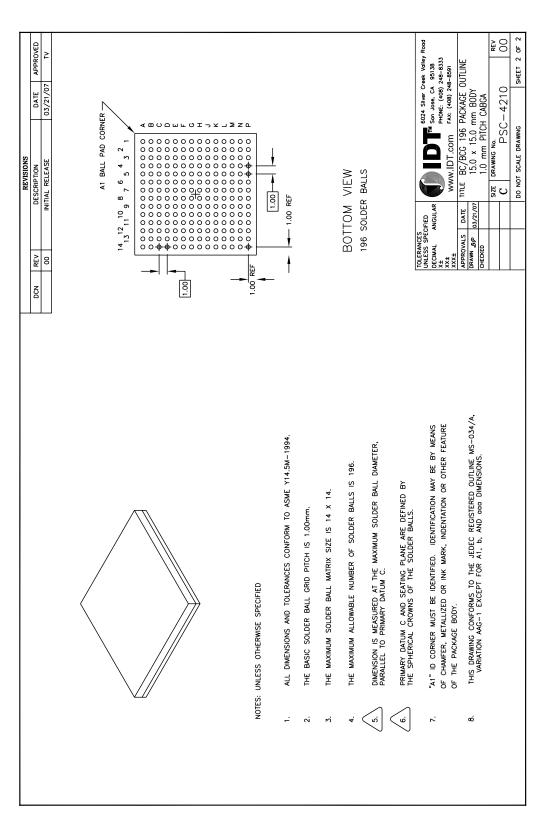
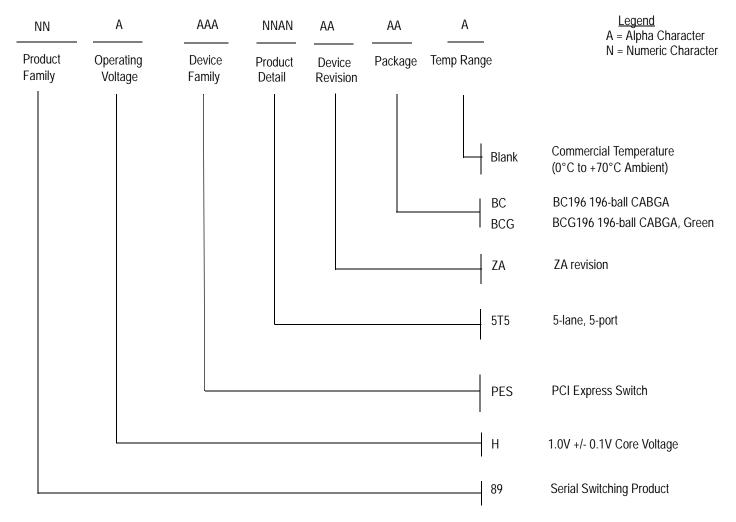

Pin	Pin	
A2	B2	
A4	B4	
A5	B5	
A7	B7	
A8	B8	
A10	B10	

Table 21 PES5T5 No Connection Pins


PES5T5 Pinout — Top View

PES5T5 Package Drawing — 196-Pin BC196/BCG196

PES5T5 Package Drawing — Page Two



Revision History

August 16, 2007: Initial publication of advanced data sheet.

September 7, 2007: Added Power-Up/Power Down Sequence.

Ordering Information

Valid Combinations

89HPES5T5ZABC196-pin BC196 package, Commercial Temperature89HPES5T5ZABCG196-pin Green BCG196 package, Commercial Temperature

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: email: <u>ssdhelp@idt.com</u> phone: 408-284-8208